| Image | Part Number | Manufacturer | Description | Series | Operating Temperature | Packaging | Mounting Type | RoHS Status | Manufacturer Part Number | Package / Case | Polarization | Base Part Number |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| LC4064B-75T48C | Lattice Semiconductor | IC CPLD 64MC 7.5NS 48TQFP | ispMACH® 4000B | 0°C ~ 90°C (TJ) | Tray | Surface Mount | - | - | 48-LQFP | - | LC4064 | |
| EPM7064LC44-10YY | Altera (Intel® Programmable Solutions Group) | IC CPLD 64MC 10NS 44PLCC | MAX® 7000 | 0°C ~ 70°C (TA) | Tray | - | - | - | - | - | - | |
| EPM7192SQC160-7F | Altera (Intel® Programmable Solutions Group) | IC CPLD 192MC 7.5NS 160QFP | MAX® 7000S | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 160-BQFP | - | EPM7192 | |
| XCR3384XL-12TQ144C | Xilinx | IC CPLD 384MC 10.8NS 144QFP | CoolRunner XPLA3 | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 144-LQFP | - | - | |
| XCR3384XL-12FT256C | Xilinx | IC CPLD 384MC 10.8NS 256BGA | CoolRunner XPLA3 | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 256-LBGA | - | XCR3384XL | |
| LC5256MV-75F256I | Lattice Semiconductor | IC CPLD 256MC 7.5NS 256FBGA | ispXPLD® 5000MV | -40°C ~ 105°C (TJ) | Tray | Surface Mount | - | - | 256-BGA | - | LC5256 | |
| LC4064C-10T48I | Lattice Semiconductor | IC CPLD 64MC 10NS 48TQFP | ispMACH® 4000C | -40°C ~ 105°C (TJ) | Tray | Surface Mount | - | - | 48-LQFP | - | LC4064 | |
| ISPLSI 1032E-125LJN | Lattice Semiconductor | IC CPLD 128MC 7.5NS 84PLCC | ispLSI® 1000E | 0°C ~ 70°C (TA) | Tube | Surface Mount | - | - | 84-LCC (J-Lead) | - | ISPLSI 1032 | |
| EPM7160EQC100-15 | Altera (Intel® Programmable Solutions Group) | IC CPLD 160MC 15NS 100QFP | MAX® 7000 | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 100-BQFP | - | EPM7160 | |
| M4A3-384/160-12YC | Lattice Semiconductor | IC CPLD 384MC 12NS 208QFP | ispMACH® 4A | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 208-BFQFP | - | M4A3-384 |
CPLDs are programmable logic devices that contain configurable logic blocks and interconnects similar to FPGAs but with a smaller capacity and simpler architecture. CPLDs are often used in applications requiring glue logic, interface bridging, and simple state machine implementations. They offer advantages such as fast design turnaround, low power consumption, and predictable timing characteristics, making them suitable for a wide range of embedded system designs.