| Image | Part Number | Manufacturer | Description | Series | Operating Temperature | Packaging | Mounting Type | RoHS Status | Manufacturer Part Number | Package / Case | Polarization | Base Part Number |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EPM7192SQC160-10 | Altera (Intel® Programmable Solutions Group) | IC CPLD 192MC 10NS 160QFP | MAX® 7000S | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 160-BQFP | - | EPM7192 | |
| M5LV-128/74-10VC | Lattice Semiconductor | IC CPLD 128MC 10NS 100TQFP | MACH® 5 | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 100-LQFP | - | M5LV-128 | |
| M4A3-256/128-12YI | Lattice Semiconductor | IC CPLD 256MC 12NS 208QFP | ispMACH® 4A | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 208-BFQFP | - | M4A3-256 | |
| M4A3-64/32-7VI | Lattice Semiconductor | IC CPLD 64MC 7.5NS 44TQFP | ispMACH® 4A | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 44-TQFP | - | M4A3-64 | |
| M5-128/68-12YC/1 | Lattice Semiconductor | IC CPLD 128MC 12NS 100QFP | MACH® 5 | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 100-BQFP | - | M5-128 | |
| LC4256V-10T144I | Lattice Semiconductor | IC CPLD 256MC 10NS 144TQFP | ispMACH® 4000V | -40°C ~ 105°C (TJ) | Tray | Surface Mount | - | - | 144-LQFP | - | LC4256 | |
| LC4128ZE-5UMN132C | Lattice Semiconductor | IC CPLD 128MC 5.8NS 132UCBGA | ispMACH® 4000ZE | 0°C ~ 90°C (TJ) | Tray | Surface Mount | - | - | 132-VFBGA | - | LC4128 | |
| M5-512/160-10YC | Lattice Semiconductor | IC CPLD 512MC 10NS 208QFP | MACH® 5 | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 208-BFQFP | - | M5-512 | |
| XC2C64A-5VQ44C | Xilinx | IC CPLD 64MC 4.6NS 44VQFP | CoolRunner II | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 44-TQFP | - | XC2C64A | |
| ATF1504ASV-15AC44 | Micrel / Microchip Technology | IC CPLD 64MC 15NS 44TQFP | ATF15xx | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 44-TQFP | - | ATF1504 |
CPLDs are programmable logic devices that contain configurable logic blocks and interconnects similar to FPGAs but with a smaller capacity and simpler architecture. CPLDs are often used in applications requiring glue logic, interface bridging, and simple state machine implementations. They offer advantages such as fast design turnaround, low power consumption, and predictable timing characteristics, making them suitable for a wide range of embedded system designs.