| Image | Part Number | Manufacturer | Description | Series | Operating Temperature | Packaging | Mounting Type | RoHS Status | Manufacturer Part Number | Package / Case | Polarization | Base Part Number |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CY37064P84-200JXCT | Cypress Semiconductor | IC CPLD 64MC 6NS 84PLCC | Ultra37000™ | 0°C ~ 70°C (TA) | Tape & Reel (TR) | Surface Mount | - | - | 84-LCC (J-Lead) | - | CY37064 | |
| XC95288XL-7BG256C | Xilinx | IC CPLD 288MC 7.5NS 256BGA | XC9500XL | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 256-BBGA | - | XC95288XL | |
| EPM7032TC44-7 | Altera (Intel® Programmable Solutions Group) | IC CPLD 32MC 7.5NS 44TQFP | MAX® 7000 | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 44-TQFP | - | EPM7032 | |
| LC5768VG-10F484I | Lattice Semiconductor | IC CPLD 768MC 10NS 484FBGA | ispMACH™ 5000VG | -40°C ~ 105°C (TJ) | Tray | Surface Mount | - | - | 484-BBGA | - | LC5768 | |
| EPM7096LC84-15 | Altera (Intel® Programmable Solutions Group) | IC CPLD 96MC 15NS 84PLCC | MAX® 7000 | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 84-LCC (J-Lead) | - | EPM7096 | |
| GAL22V10D-15LJNI | Lattice Semiconductor | IC CPLD 10MC 15NS 28PLCC | GAL®22V10 | -40°C ~ 85°C (TA) | Tube | Surface Mount | - | - | 28-LCC (J-Lead) | - | GAL22V10 | |
| LC4064ZE-7TCN100I | Lattice Semiconductor | IC CPLD 64MC 7.5NS 100TQFP | ispMACH® 4000ZE | -40°C ~ 105°C (TJ) | Tray | Surface Mount | - | - | 100-LQFP | - | LC4064 | |
| CY39030V208-233NTXC | Cypress Semiconductor | IC CPLD 512MC 7.2NS 208BQFP | Delta 39K™ ISR™ | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 208-BFQFP | - | CY39030 | |
| CY37192P160-125AXI | Cypress Semiconductor | IC CPLD 192MC 10NS 160LQFP | Ultra37000™ | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 160-LQFP | - | CY37192 |
CPLDs are programmable logic devices that contain configurable logic blocks and interconnects similar to FPGAs but with a smaller capacity and simpler architecture. CPLDs are often used in applications requiring glue logic, interface bridging, and simple state machine implementations. They offer advantages such as fast design turnaround, low power consumption, and predictable timing characteristics, making them suitable for a wide range of embedded system designs.