| Image | Part Number | Manufacturer | Description | Series | Operating Temperature | Packaging | Mounting Type | RoHS Status | Manufacturer Part Number | Package / Case | Polarization | Base Part Number |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| XCR3384XL-12FTG256I | Xilinx | IC CPLD 384MC 10.8NS 256BGA | CoolRunner XPLA3 | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 256-LBGA | - | - | |
| EPM240M100I5N | Altera (Intel® Programmable Solutions Group) | IC CPLD 192MC 4.7NS 100MBGA | MAX® II | -40°C ~ 100°C (TJ) | Tray | Surface Mount | - | - | 100-TFBGA | - | EPM240 | |
| XCR3512XL-10PQ208I | Xilinx | IC CPLD 512MC 9NS 208QFP | CoolRunner XPLA3 | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 208-BFQFP | - | - | |
| LC4256B-75F256BC | Lattice Semiconductor | IC CPLD 256MC 7.5NS 256FPBG | ispMACH® 4000B | 0°C ~ 90°C (TJ) | Tray | Surface Mount | - | - | 256-BGA | - | LC4256 | |
| M5LV-256/104-15VI | Lattice Semiconductor | IC CPLD 256MC 15NS 144TQFP | MACH® 5 | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 144-LQFP | - | M5LV-256 | |
| LC4384C-5FT256I | Lattice Semiconductor | IC CPLD 384MC 5NS 256FTBGA | ispMACH® 4000C | -40°C ~ 105°C (TJ) | Tray | Surface Mount | - | - | 256-LBGA | - | LC4384 | |
| ATF1504ASL-20JC68 | Micrel / Microchip Technology | IC CPLD 64MC 20NS 68PLCC | ATF15xx | 0°C ~ 70°C (TA) | Tube | Surface Mount | - | - | 68-LCC (J-Lead) | - | ATF1504 | |
| XCR3128XL-6VQ100C | Xilinx | IC CPLD 128MC 100VQFP | CoolRunner XPLA3 | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 100-TQFP | - | - | |
| M5-320/192-7SAI | Lattice Semiconductor | IC CPLD 320MC 7.5NS 256SBGA | MACH® 5 | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 256-LBGA | - | M5-320 | |
| LC4064ZC-37T100C | Lattice Semiconductor | IC CPLD 64MC 3.7NS 100TQFP | ispMACH® 4000Z | 0°C ~ 90°C (TJ) | Tray | Surface Mount | - | - | 100-LQFP | - | LC4064 |
CPLDs are programmable logic devices that contain configurable logic blocks and interconnects similar to FPGAs but with a smaller capacity and simpler architecture. CPLDs are often used in applications requiring glue logic, interface bridging, and simple state machine implementations. They offer advantages such as fast design turnaround, low power consumption, and predictable timing characteristics, making them suitable for a wide range of embedded system designs.