| Image | Part Number | Manufacturer | Description | Series | Operating Temperature | Packaging | RoHS Status | Manufacturer Part Number | Requires | Package / Case | Polarization | Base Part Number |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10AS027H4F35E3SG | Intel® FPGAs | 1152-PIN FBGA | Arria 10 SX | 0°C ~ 100°C (TJ) | Tray | - | - | - | - | - | - | |
| XC7Z020-1CLG400CES | Xilinx | IC SOC CORTEX-A9 ARTIX-7 400BGA | Zynq®-7000 | 0°C ~ 85°C (TJ) | Tray | - | - | - | 400-LFBGA, CSPBGA | - | XC7Z020 | |
| XCZU4EG-3SFVC784E | Xilinx | IC FPGA 252 I/O 784FCBGA | Zynq® UltraScale+™ MPSoC EG | 0°C ~ 100°C (TJ) | Tray | - | - | - | 784-BBGA, FCBGA | - | - | |
| M2S060T-1VFG400 | Microsemi | IC FPGA SOC 60K LUTS | SmartFusion®2 | 0°C ~ 85°C (TJ) | Tray | - | - | - | 400-LFBGA | - | - | |
| 5ASXMB3G6F40C6N | Intel® FPGAs | IC FPGA 528 I/O 1517FBGA | Arria V SX | 0°C ~ 85°C (TJ) | Tray | - | - | - | 1517-BBGA, FCBGA | - | 5ASXMB3 | |
| 10AS016C3U19E2LG | Intel® FPGAs | IC SOC FPGA 192 I/O 484UBGA | Arria 10 SX | 0°C ~ 100°C (TJ) | Tray | - | - | - | 484-BFBGA, FCBGA | - | - | |
| M2S010-1VF400I | Microsemi | IC FPGA SOC 10K LUTS 400VFBGA | SmartFusion®2 | -40°C ~ 100°C (TJ) | Tray | - | - | - | 400-LFBGA | - | M2S010 | |
| 10AS066K2F35I2LG | Intel® FPGAs | IC SOC FPGA 396 I/O 1152FBGA | Arria 10 SX | -40°C ~ 100°C (TJ) | Tray | - | - | - | 1152-BBGA, FCBGA | - | - | |
| 1SX280LU3F50E3VG | Intel® FPGAs | 2397-PIN FBGA | Stratix® 10 SX | 0°C ~ 100°C (TJ) | Tray | - | - | - | - | - | - | |
| 10AS022E3F29I2LG | Intel® FPGAs | 780-PIN FBGA | Arria 10 SX | -40°C ~ 100°C (TJ) | Tray | - | - | - | - | - | - |
A System On Chip (SoC) is a complete integrated circuit that contains most or all of the components required for a computing or electronic system on a single chip. These components typically include a central processing unit (CPU) or microcontroller, memory, input/output interfaces, and peripheral controllers. SoCs are designed to provide high performance and low power consumption while minimizing the size and complexity of the overall system. They are commonly used in embedded systems such as smartphones, tablets, IoT devices, and automotive electronics, where space, power, and cost constraints are critical considerations.