| Image | Part Number | Manufacturer | Description | Series | Operating Temperature | Packaging | Mounting Type | RoHS Status | Manufacturer Part Number | Package / Case | Polarization | Base Part Number |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| M5-320/192-20SAI | Lattice Semiconductor | IC CPLD 320MC 20NS 256SBGA | MACH® 5 | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 256-LBGA | - | M5-320 | |
| 5M1270ZT144C4N | Altera (Intel® Programmable Solutions Group) | IC CPLD 980MC 6.2NS 144TQFP | MAX® V | 0°C ~ 85°C (TJ) | Tray | Surface Mount | - | - | 144-LQFP | - | 5M1270 | |
| M4A5-256/128-10YNC | Lattice Semiconductor | IC CPLD 256MC 10NS 208QFP | ispMACH® 4A | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 208-BFQFP | - | M4A5-256 | |
| XCR3384XL-10FG324I | Xilinx | IC CPLD 384MC 9NS 324FBGA | CoolRunner XPLA3 | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 324-BBGA | - | XCR3384XL | |
| M4A3-256/128-12YNI | Lattice Semiconductor | IC CPLD 256MC 12NS 208QFP | ispMACH® 4A | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 208-BFQFP | - | M4A3-256 | |
| XC95108-10PQ100I | Xilinx | IC CPLD 108MC 10NS 100QFP | XC9500 | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 100-BQFP | - | XC95108 | |
| GAL16V8D-15LPN | Lattice Semiconductor | IC CPLD 8MC 15NS 20DIP | GAL®16V8 | 0°C ~ 75°C (TA) | Bulk | Through Hole | - | - | 20-DIP (0.300", 7.62mm) | - | GAL16V8 | |
| XC95144XL-5TQG100C | Xilinx | IC CPLD 144MC 5NS 100TQFP | XC9500XL | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 100-LQFP | - | XC95144XL | |
| EPM3512AQI208-10N | Altera (Intel® Programmable Solutions Group) | IC CPLD 512MC 10NS 208QFP | MAX® 3000A | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 208-BFQFP | - | EPM3512 | |
| XCR3384XL-10PQG208I | Xilinx | IC CPLD 384MC 9NS 208QFP | CoolRunner XPLA3 | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 208-BFQFP | - | - |
CPLDs are programmable logic devices that contain configurable logic blocks and interconnects similar to FPGAs but with a smaller capacity and simpler architecture. CPLDs are often used in applications requiring glue logic, interface bridging, and simple state machine implementations. They offer advantages such as fast design turnaround, low power consumption, and predictable timing characteristics, making them suitable for a wide range of embedded system designs.