| Image | Part Number | Manufacturer | Description | Series | Operating Temperature | Packaging | Mounting Type | RoHS Status | Manufacturer Part Number | Package / Case | Polarization | Base Part Number |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| XC9536XL-10CS48I | Xilinx | IC CPLD 36MC 10NS 48CSP | XC9500XL | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 48-FBGA, CSPBGA | - | XC9536XL | |
| EPM3256ATI144-10N | Altera (Intel® Programmable Solutions Group) | IC CPLD 256MC 10NS 144TQFP | MAX® 3000A | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 144-LQFP | - | EPM3256 | |
| LC4384B-5FTN256C | Lattice Semiconductor | IC CPLD 384MC 5NS 256FTBGA | ispMACH® 4000B | 0°C ~ 90°C (TJ) | Tray | Surface Mount | - | - | 256-LBGA | - | LC4384 | |
| EPM7512AETC144-12N | Intel® FPGAs | IC CPLD 512MC 12NS 144TQFP | MAX® 7000A | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 144-LQFP | - | EPM7512 | |
| XC9572-15TQG100I | Xilinx | IC CPLD 72MC 15NS 100TQFP | XC9500 | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 100-LQFP | - | XC9572 | |
| ISPLSI 2128A-100LQN160 | Lattice Semiconductor | IC CPLD 128MC 10NS 160QFP | ispLSI® 2000A | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 160-BQFP | - | ISPLSI 2128 | |
| XCR3512XL-10FGG324I | Xilinx | IC CPLD 512MC 9NS 324BGA | CoolRunner XPLA3 | -40°C ~ 85°C (TA) | Tray | Surface Mount | - | - | 324-BBGA | - | - | |
| M4A3-192/96-7FAC | Lattice Semiconductor | IC CPLD 192MC 7.5NS 144FBGA | ispMACH® 4A | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 144-BGA | - | M4A3-192 | |
| EPM7128EQC100-10YY | Altera (Intel® Programmable Solutions Group) | IC CPLD 128MC 10NS 100QFP | MAX® 7000 | 0°C ~ 70°C (TA) | Tray | Surface Mount | - | - | 100-BQFP | - | - | |
| LC4128V-10TN100I | Lattice Semiconductor | IC CPLD 128MC 10NS 100TQFP | ispMACH® 4000V | -40°C ~ 105°C (TJ) | Tray | Surface Mount | - | - | 100-LQFP | - | LC4128 |
CPLDs are programmable logic devices that contain configurable logic blocks and interconnects similar to FPGAs but with a smaller capacity and simpler architecture. CPLDs are often used in applications requiring glue logic, interface bridging, and simple state machine implementations. They offer advantages such as fast design turnaround, low power consumption, and predictable timing characteristics, making them suitable for a wide range of embedded system designs.