| Image | Part Number | Manufacturer | Description | Series | Operating Temperature | Mounting Type | RoHS Status | Manufacturer Part Number | Voltage - Supply | Shell Style | Package / Case | Polarization |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10AX066N4F40I3LG | Altera (Intel® Programmable Solutions Group) | IC FPGA 588 I/O 1517FCBGA | Arria 10 GX | -40°C ~ 100°C (TJ) | Surface Mount | - | - | 0.87 V ~ 0.93 V | - | 1517-BBGA, FCBGA | - | |
| A3P600-FG144I | Microsemi | IC FPGA 97 I/O 144FBGA | ProASIC3 | -40°C ~ 100°C (TJ) | Surface Mount | - | - | 1.425 V ~ 1.575 V | - | 144-LBGA | - | |
| XCKU115-2FLVD1924E | Xilinx | IC FPGA KINTEX-U 1924FCBGA | Kintex® UltraScale™ | 0°C ~ 100°C (TJ) | Surface Mount | - | - | 0.922 V ~ 0.979 V | - | 1924-BBGA, FCBGA | - | |
| LFE2-70E-6FN672I | Lattice Semiconductor | IC FPGA 500 I/O 672FBGA | ECP2 | -40°C ~ 100°C (TJ) | Surface Mount | - | - | 1.14 V ~ 1.26 V | - | 672-BBGA | - | |
| A1440A-1PQG160C | Microsemi | IC FPGA 100 I/O 160QFP | ACT™ 3 | 0°C ~ 70°C (TA) | Surface Mount | - | - | 4.5 V ~ 5.5 V | - | 160-BQFP | - | |
| EPF10K130EQC240-2N | Altera (Intel® Programmable Solutions Group) | IC FPGA 186 I/O 240QFP | FLEX-10KE® | 0°C ~ 70°C (TA) | Surface Mount | - | - | 2.375 V ~ 2.625 V | - | 240-BQFP | - | |
| EPF10K30RC208-4N | Altera (Intel® Programmable Solutions Group) | IC FPGA 147 I/O 208RQFP | FLEX-10K® | 0°C ~ 70°C (TA) | Surface Mount | - | - | 4.75 V ~ 5.25 V | - | 208-BFQFP Exposed Pad | - | |
| 5SGSED8N3F45C2N | Altera (Intel® Programmable Solutions Group) | IC FPGA 840 I/O 1932FBGA | Stratix® V GS | 0°C ~ 85°C (TJ) | Surface Mount | - | - | 0.87 V ~ 0.93 V | - | 1932-BBGA, FCBGA | - | |
| XC2VP2-5FGG256C | Xilinx | IC FPGA 140 I/O 256FGBGA | Virtex®-II Pro | 0°C ~ 85°C (TJ) | Surface Mount | - | - | 1.425 V ~ 1.575 V | - | 256-BGA | - | |
| XCV300-5PQ240C | Xilinx | IC FPGA 166 I/O 240QFP | Virtex® | 0°C ~ 85°C (TJ) | Surface Mount | - | - | 2.375 V ~ 2.625 V | - | 240-BFQFP | - |
FPGAs are semiconductor devices that contain configurable logic blocks and interconnects, allowing users to implement custom digital logic circuits. Unlike microcontrollers and microprocessors, which execute predefined instructions, FPGAs can be programmed to perform specific tasks by configuring the interconnections between logic blocks. This flexibility makes FPGAs suitable for a wide range of applications, including digital signal processing, telecommunications, data processing, and hardware acceleration.